تبلیغات :
آکوستیک ، فوم شانه تخم مرغی، صداگیر ماینر ، یونولیت
دستگاه جوجه کشی حرفه ای
فروش آنلاین لباس کودک
خرید فالوور ایرانی
خرید فالوور اینستاگرام
خرید ممبر تلگرام

[ + افزودن آگهی متنی جدید ]




مشاهده نتيجه نظر خواهي: -

راي دهنده
0. شما نمي توانيد در اين راي گيري راي بدهيد
  • -

    0 0%
  • -

    0 0%
صفحه 22 از 32 اولاول ... 12181920212223242526 ... آخرآخر
نمايش نتايج 211 به 220 از 315

نام تاپيک: «««تـازه های دنیـــای شیـــــمی »»»

  1. #211
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض الکترولیز آب




    برای اولین بار در سال ۱۸۰۰، آب بوسیله کارلسیل و نیکولسن ، الکترولیز شد که منجر به آزاد شدن هیدروژن در کاتد و اکسیژن در آند شد.

    از آنجا که آب خالص رسانا نیست، می‌بایستی الکترولیتی به آن اضافه کرد که نه آنیون آن قادر به ترکیب شدن با الکترودها باشد و نه کاتیون آن. برای این منظور ، می‌توان خواه از یک اسید مثلا اسید سولفوریک (H۲SO۴) ، خواه یک باز ، مانند هیدروکسید سدیم (NaOH) ، و حتی یک نمک (Na۲SO۴) استفاده کرد. برعکس ، به‌علت آزاد شدن کلر آندی ، شایسته است که از مصرف کلریدها خودداری شود.

    اختلاف پتانسیل لازم برای تجزیه آب ، چیزی جز اختلاف پتانسیل الکتریکی یک الکترود اکسیژنی و یک الکترود هیدروژنی نیست که در PH برابر ۱.۲۳ ولت است. در عمل ، بایستی اضافه پتانسیل الکتریکی آندی و کاتدی را که موجب افزایش اختلاف پتانسیل تحمیلی و بنابراین مصرف انرژی می‌شود، به حساب آورد. الکترودهای لازم برای الکترولیز آب و اختلاف پتانسیل نتیجه شده این اضافه پتانسیلهای الکتریکی ، بستگی اندکی به نوع الکترولیت انتخاب شده دارند، اما به‌شدت به ماهیت الکترودها وابسته‌اند. بهترین نتایج را می‌توان با کاتد پلاتینی و آند نیکلی بدست آورد. اما بدلیل قیمت بسیار بالای چنین وسایلی و نظر به برتری اندکی که نتیجه می‌شود، در صنعت ترجیح داده می‌شود تا با الکترودهای آهنی در محلول سود یا پتاس سوزان کار کنند. [بزرگ‌نمایی تصویر] بنابراین ، اختلاف پتانسیل حداقل الکترولیز در حدود ۱.۷ ولت است. بایستی افت اهمی پتانسیل الکتریکی در حمام را به آن اضافه کرد. با وجود دیافراگم ، مقدار افت بیشتر می‌شود. در مجموع ، اختلاف پتانسیل حقیقی ، اندکی بیشتر از ۲ ولت است.

    برای بدست آوردن گازهای خالص ، بایستی قسمتهای آندی و کاتدی را از یکدیگر جدا کرد. برای این منظور ، خواه از یک ظرف استوانه‌ای شیشه‌ای که کاتد را احاطه می‌کند و خواه از یک دیافراگم آزبستی استفاده می‌شود. لیکن ، گاز خالص بدست آمده نسبی است و هر یک از گازهای اکسیژن و هیدروژن می‌توانند تا ۲ الی ۳ درصد از دیگری را در خود داشته باشند، ولی عمل پالایش شیمیایی بعدی آسان است..

    مصرف انرژی در حدود ۶ کیلووات ساعت (KWh) ، برای بدست آوردن یک متر مکعب هیدروژن و نیم متر مکعب اکسیژن ، مقدار زیادی است و علاوه بر آن ، اکسیژن غالبا محل فروش هم ندارد. بدین ترتیب ، این روش اغلب در مناطقی که دارای انرژی الکتریکی فراوان هستند (نروژ) و بویژه به‌منظور تهیه هیدروژن متراکم که در سیلندر به فروش می‌رسد، استفاده می‌شوند. اما این هیدروژن بخش اندکی از کل گاز هیدروژن تولید شده است. اما با این وجود ، دستگاههای الکترولیز در فرانسه یا به منظور ایجاد موازنه تولید یا برای استفاده از کارخانجات مخصوص که هیدروژن خالص را به‌عنوان کاهنده بکار می‌برند، بکار برده می‌شوند. در این قبیل موارد ، اغلب اکسیژن در فضا رها می‌شود.

  2. #212
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض تبلور مجدد Recrystallization

    در واکنشهای آلی محصولات بندرت به صورت خالص به دست می آیند. وقتی ماده به صورت جامد باشد معمولا آنرا در حلالی حل کرده ومجددا به صورت بلور رسوب میدهند. این عمل را تبلور مجدد می نامند.
    ترکیبی که میخواهیم متبلور کنیم را باید در یک حلال یا مخلوطی از حلالهای داغ، محلول بوده ودر حالت سرد همان حلالها نامحلول باشد. عمل تخلیص در صورتی انجام میشود که ناخالصی، یا در حلال سرد محلول باشد و یا در حلال داغ نامحلول باشد. در حالت دوم محلول رابصورت داغ صاف میکنیم تا ناخالصیهای محلول جدا شوند. اگر محلول رنگی باشد و مابدانیم که جسم مورد نظر بیرنگ است مقدار کمی از زغال رنگبر به محلول سرد اضافه نموده سپس آنرا حرارت داده، بصورت داغ صاف میکنیم. زغال رنگبر، ناخالصیهای رنگی راجذب میکند.

    انتخاب محیط تبلور کار ساده ای نیست، رفتار حلالیت ترکیب یا باید شناخته شده باشد و یا باید به طریق تجربی مشخص گردد. مثلا وقتی که تبلور پارا دی بروموبنزن مورد نظر باشد مخلوطی از اتانل و آب به کار میرود. ترکیب هم در اتانول سرد و هم در اتانل داغ محلول است: از اینرو اتانول تنها، برای این کار مفید نیست. از طرف دیگر این ترکیب چه در آبسرد و چه در آب داغ کم محلول است بنابر این آب تنها نیز برای این کار مفید نیست. اما مخلوط مساوی از الکل و آب در حالت داغ حلال خوبی برای جسم است و در حالت سرد حلالیت آن جزئی است از اینرو از مخلوط این دو حلال برای تبلور پارادی بروموبنزن استفاده میشود.

    بعضی مواقع عمل تبلور خودبخود صورت نمیگیرد و باید آنرا بر اثر تحریک متبلور نمود. بدین منظور یا جدار داخلی ظرف در سطح محلول را میخراشند و یا ذراتی خالص از همان جسم را در محلول سرد وارد میکنند تا تبلور شروع شود. بسیاری از ترکیبات بر اثر سرد کردن محلول یا سرد کردن به همراه هم زدن به صورت بلور در میآیند. برخی ترکیبات به صورت روغن در آمده چندین ساعت و حتی گاهی چندین روز وقت لازم است تا بلور تشکیل شود.

    بطور خلاصه تبلور مجدد به روش انحلال شامل مراحل زیر است:
    (1)- انتخاب حلال مناسب،
    (2)- انحلال جسم مورد تخلیص در نقطه جوش حلال یا نزدیک به آن،
    (3)- صاف کردن محلول داغ برای جداکردن ناخالصیهای نامحلول،
    (4)- تبلور از محلولی که درحال سرد شدن است،
    (5)- جداکردن بلورها از محلولی که در آن شناورهستند،
    (6)- شستشوی بلورها برای خارج کردن محلولی که به آنها آغشته است،
    (7)- خشک کردن بلورها

    بخش عملی

    خالص سازی بنزوئیک اسید
    یک گرم بنزوئیک اسید ناخالص را در ظرف ارلن مایر 50 میلی لیتری تمیزی قرار دهید. حدود 10 میلی لیتر آب به آن اضافه کنید. با چراغ گاز حرارت دهید تا به آرامی به جوش آید. در قسمتهای یک میلی لیتری به اندازه لازم آب اضافه کنید تا دیگر جسم جامدی در محلول جوشان حل نشود.
    اگر محلول رنگین است (توجه داشته باشید که بنزوئیک اسید خالص بیرنگ است) محلول را کمی سرد کنید (احتیاط: هیچگاه به محلول جوشان زغال رنگبر اضافه نکنید) حدود 1/0 گرم زغال رنگبر اضافه کنید و دوباره مخلوط را همراه با همزدن گرم کنید تا برای چند دقیقه بجوشد. مخلوط داغ را مطابق شکل (1) بصورت داغ صاف کنید. ظرف خالی را با 1 تا 2 میلی لیتر آب داغ بشویید و محلول شستشو را از صافی عبور دهید. در صورتی که محلول صاف شده هنوز رنگی باشد، عمل با زغال رنگبر را تکرار کنید. اگر طی صاف کردن بلور تشکیل شد محلول را دوباره حرارت دهید تا بلورها حل شود سپس ظرف را با شیشه ساعت یا بشر معکوسی بپوشانید و اجازه دهید به آرامی سرد شود تا به دمای اتاق برسد (اگر سریع سرد شود بلورهای ریز ایجاد میشود). سپس ظرف را برای حدود 15 دقیقه در آب یخ قرار دهید.


    به کمک صافی مکنده ای (تکه ای از کاغذ صافی را به اندازه کف قیف بوخنر بریده و در ته قیف قرار داده و با کمی حلال خیس کنید تا به کف قیف بوخنر بچسبد و مطابق شکل دستگاه را ببندید.) بلورها را جمع آوری کنید و توده رسوب روی صافی را با دو قسمت کم آب سرد بشویید.

    1- ارلن تصفیه (ارلن تخلیه)
    2- قیف بوخنر
    3- شلنگ خلاء

    بلور ها را بر روی تکه ای کاغذ صافی یا بهتر از آن بر روی شیشه ساعتی، پخش کنید و بگذارید تا در هوا کاملا خشک شود. وزن و نقطه ذوب محصول خالص شده را پس از اینکه کاملا خشک شد اندازه بگیرید. درصد بازده را حساب کنید.

  3. #213
    آخر فروم باز officer's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    ایران - گیلان
    پست ها
    1,346

    پيش فرض تولید صنعتی چسب Glue

    چسب‌های بسیاری برای متصل کردن اجسام مشابه یا غیر مشابه در دسترس هستند. امروزه تقریبا استفاده از چسباننده‌های طبیعی مثل سریش بجز موارد استفاده خاصی منسوخ شده است. در عوض هر روز شاهد تولید و سنتز چسب‌های جدیدی هستیم که منشأ پلیمری دارند. چسب‌ها در اشل صنعتی به شیوه‌های گوناگونی تهیه می‌شوند که در این بحث برخی از مهمترین روشها را معرفی می‌کنیم.

    پخت یا پروراندن رزین چسب به صورت یک جسم جامد
    اپوکسی‌ها معروفترین چسبهای این گروه هستند که با استفاده از رزینهای سیکلوآلیفاتیک ، طوری فرمولبندی می‌شوند که در دماهای بالا قابل استفاده باشند. برای سنتز چسبهای قوی و نیمه انعطاف‌پذیر از رزینهای اپوکسی با عوامل پخت پلی آمین یا پلی آمید استفاده می‌شود و بیشتر اپوکسی‌ها بدون استفاده از مواد افزودنی هم چسبندگی خوبی دارند. زمان پخت می‌تواند از ثانیه‌ها تا روزها طول بکشد که این امر به کاتالیزورها و دما بستگی دارد.
    اپوکسی فنولی با استفاده از این چسبها می‌توان اتصالاتی پدید آورد که تا 315ºC پایدار هستند. این چسبها در دماهای بالا پرورده می‌شوند و از آنها برای پیوند ساختمانی و لانه زنبوری استفاده می‌شود. از دیگر چسبهای این گروه می‌توان از پلی استرها (که ارزان قیمت و زودگیر و شکننده هستند)، سیلیکونها ، سیانوآکریلاتها و آکریلیها ، نام برد.

    تبخیر حلال از محلول پلیمر گرمانرم
    مواد پلیمری حل شده در حلالها می‌توانند چسبهای مفیدی تشکیل دهند. با تبخیر حلال ، پلیمر گرمانرم جامدی حاصل می‌شود که به چسب حلال معروف است. از این گروه می‌توان نیتروسلولز را نام برد که سالها محلول 10 تا 25 در صد آن به عنوان چسب هواپیما و یا برای مصارف خانگی استفاده می‌شد.
    آکریلیها ، محلول رزینهای آکریلیک پرورده شده هستند و به چسبهای پلاستیک مشهورند و برای متصل کردن پلاستیکهای ABS ، پلی استیرن و آکریلی مؤثرند. سیمانهای لاستیکی هم جزو چسبهای حلال می‌باشند.

    تبخیر آب از یک شیرابه پلیمری
    شیرابه‌ها از ذرات کوچک پلیمر پرورانده شده معلق در آب تشکیل شده‌اند و در موقع تبخیر آب ، ذرات بوسیله نیروهای واندرواسی به یکدیگر متصل می‌شوند. رزین خشک شده ، دیگر در آب حل نمی‌شود. از این چسبها می‌توان پلی وینیل استات را نام برد که برای اتصال قطعات چوبی بکار می‌رود و به صورت شیرابه (محلول در آب) عرضه می‌شود و به نام چسب سفید یا چسب چوب معروف است.

    سرد کردن پلیمر گرمانرم ذوب شده
    پلیمرهایی که در دمای مناسب ذوب می‌شوند و دارای نیروهای جاذبه زیادی می‌باشند، بعنوان چسب داغ ذوب شناخته می‌شوند. از انواع پلی استرهای گرمانرم ، پلی آمیدها و پلی اتیلنها ، بعنوان چسب داغ ذوب استفاده می‌شود. این چسبها به صورت لوله‌هایی با ضخامت کم در بازار موجود می‌باشد. در اثر حرارت دادن ، لوله ذوب و جاری می‌شود و با مالیدن به سطح جسم و فشردن سطوح به همدیگر ، اتصال در ضمن سرد شدن انجام می‌شود.

    عوامل اتصال دهنده
    موادی که با شیمی دوگانه وجود دارند، می‌توانند به چسبندگی کمک کنند. این ترکیبات دارای دو گروه عاملی متفاوت در دو انتها می‌باشند و معمولیترین آنها عوامل اتصال دهنده سیلان می‌باشند. یک انتهای این ترکیبات ، تولید چسبندگی با شیشه یا مواد معدنی دیگر می‌کند و انتهای دیگر از نظر شیمیایی فعال می‌باشد.
    اخیرا ترکیباتی به نام تیتاناتها وارد بازار شده‌اند که مانند سیلان دارای شیمی دوگانه هستند و شبیه آنها عمل می‌کنند، اما برتریهایی هم در برخی خواص نسبت به سیلانها دارند.

  4. #214
    Banned
    تاريخ عضويت
    Jul 2010
    محل سكونت
    تهران
    پست ها
    18

    پيش فرض

    0-چون اصلا باهاش حال نمیکنم

  5. #215
    پروفشنال saeed-d's Avatar
    تاريخ عضويت
    Jul 2008
    محل سكونت
    TABRIZ
    پست ها
    738

    پيش فرض

    دوستان یک سوال :
    آیا عنصری به اسمه sh هم وجود داره ؟
    ممنون میشه توضیح بدین
    سلام
    نه وجود نداره
    شاید منظورت Sn قلع باشه
    لیست عناصری که با s شروع میشه:
    Si
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    S
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Sc
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Se
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Sr
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Sn
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Sb
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید
    Sg
    کد:
    برای مشاهده محتوا ، لطفا وارد شوید یا ثبت نام کنید

  6. #216
    Banned
    تاريخ عضويت
    Jul 2009
    محل سكونت
    اقیانوس
    پست ها
    636

    پيش فرض استفاده از نانولوله های کربنی برای تهیه هیدروژن از آب دریا

    گروهی از پژوهشگران ایتالیایی با استفاده از نانو لوله های کربنی موفق شدند از آب هیدروژن را برای تولید سوخت پاک به دست آورند.به گزارش خبرگزاری مهر، محققان دانشگاههای تریسته، پادوا و بلونیا که نتایج یافته های خود را در نیچر شیمی منتشر کرده اند با استفاده از نانولوله های کربنی الکترودهایی را ایجاد کردند که می توانند نوعی فرایند "فتوسنتز مصنوعی" را شکل دهند.
    در این سیستم فتوسنتز مصنوعی می توان اکسیژن و هیدروژن را از آب دریا به دست آورد.
    گیاهان در فرایند فوسنتز با استفاده از آب و نور خورشید، قند و اکسیژن را تولید می کنند. اکنون این محققان موفق شدند این کاتالیزور نانویی را برای تسهیل در تقسیم مولکولهای آب به اکسیژن و هیدروژن ایجاد کنند.
    براساس گزارش لارپویلیکا، مولکول H2O از دیدگاه شیمیایی در فرایندی که میزان زیادی انرژی را تولید می کند از واکنش هیدروژن و اکسیژن تشکیل می شود. در طبیعت، جلبکها و برگهای گیاهان برای رسیدن به این سطح بالای انرژی از آنزیمی به نام "فتوسیستم 2" یا PsII استفاده می کنند. ساختار این آنزیم بسیار پیچیده است و بنابراین انسان نمی تواند با الهام از آن، آنزیم مشابهی را بسازد.
    این درحالی است که الکترودهایی که این دانشمندان از نانولوله های کربنی ساختند می توانند به روشی مداوم هیدروژن را از آب به دست آورند. قطر خارجی این نانولوله های کربنی 25 نانومتر است.

  7. 2 کاربر از Hasan.M بخاطر این مطلب مفید تشکر کرده اند


  8. #217
    در آغاز فعالیت
    تاريخ عضويت
    Sep 2010
    پست ها
    2

    پيش فرض

    ;

    سلام فکر میکنم اسید سولفوریک هم خورنده خوبی برای طلا باشه ! و هم حلال خوبی !

  9. #218
    در آغاز فعالیت
    تاريخ عضويت
    Sep 2010
    پست ها
    2

    12

    سلام خوب سوالتو مطرح میکردی بهتر نبود؟؟؟

  10. #219
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    فهرستی از 20 حلال مختلف و کاربرد و اثرات آن


    حلال جزء مهمی از محلول است. حلال ها مواد شیمیایی هستند كه مواد دیگر را در خود حل می كنند. حلال ها به طور كلی به دو دسته حلال های قطبی و حلال های غیر قطبی تقسیم می شوند. در حلال قطبی، ذرات تشكیل دهنده حلال قطبی بوده و یكدیگر را با نیروی جاذبه ی الكتروستاتیكی جذب می نمایند.

    مهمترین حلال قطبی آب می باشد. انواع اسیدها مانند سولفوریك اسید H2SO4 و هیدروزن فلوئورید HF ، نیز در این دسته قرار می گیرند.

    در حلال های غیر قطبی ، ذرات حلال غیرقطبی بوده و بنابراین تنها نیروی جاذبه ی ضعیف واندروالسی بین ذرات وجود دارد، به همین دلیل این حلال ها اغلب، دارای نقطه ی جوش بسیار پایین بوده و فرار هستند.

    حلال های آلی نسبت به حلال های غیر آلی یا حلال های معدنی، قطبیت كمتری دارند و درنتیجه معمولا" این دسته از حلالها ، مواد غیر قطبی را بهتر در خود حل می كنند. چند حلال در زیر آمده است. حلالها موقعی مفید هستند كه مایع باشند به عنوان مثال آب در محدوده ی 0 تا 100 درجه سانتیگراد مایع می باشد، پس تنها در این محدوده دمایی می توانند به عنوان حلال مورد استفاده قرار گیرند. هنگامی موادی كه قرار است حل شوند، در دماهای پایین تر یا بالاتر قرار داشته باشند باید از حلالهای دیگر استفاده نمود. محدوده مایع بودن برخی حلالها در زیر آمده است:
    متانولCH3OH كه خواصی شبیه آب را دارد.

    اتانول CH3-CH2OH

    پروپانون CH3-CH2-HC=O

    1-پروپانول CH3-CH2-CH2OH

    1-بوتانول CH3-CH2-CH2-CH2OH

    اتیل استات C4H8O2

    اتوكسی اتان C4H10O

    تولوئن C7H8

    بنزن C6H6

    كربن تتراكلرید CCl4

    سیكلوهگزان C6H12

    دی متیل فرم آمید با نام اختصاری DMF و فرمول HC(O)N(CH3)2 محدوده مایع بودن بین 61- تا 153 درجه سانتیگراد می باشد.

    تترا هیدرو فوران با نام اختصاری THF و فرمول CH8O كه به شكل یه حلقه ی پنج ضلعی است كه در یكی از گوشه هایش اتم اكسیژن قرار گرفته است. محدوده مایع بودن بین 65- تا 66 درجه سانتیگراد می باشد.

    دی متیل سولفوكسید با نام اختصاری DMSO و فرمول (CH3)2SO محدوده مایع بودن بین 18 تا 189 درجه سانتیگراد می باشد.

    هگزا متیل فسفر آمید با نام اختصاری HMP و فرمول OP[N(CH3)2]

    استونیتریل CH3CN محدوده مایع بودن بین 45- تا 82 درجه سانتیگراد می باشد.

    نیترومتان CH3NO2 محدوده مایع بودن بین 29- تا 101 درجه سانتیگراد می باشد.

    دی كلرومتان CH2Cl2 محدوده مایع بودن بین 97- تا 40 درجه سانتیگراد می باشد.

    سولفولان C4H8SO2 (یك حلقه ی پنج ضلعی است كه SO2 یك گوشه و چهار CH2 گوشه های دیگر را تشكیل داده اند. محدوده مایع بودن بین 28 تا 285 درجه سانتیگراد می باشد.

    پروپان-1و2-دیول كربنات C4H6O3 . یك حلقه ی پنج ضلعی كه C=O یك گوشه و دو تا o نیز دو گوشه ، CH2 یك گوشه و H3CH گوشه دیگر را تشكیل می دهند. این حلال از 49- تا 242 درجه سانتیگراد مایع می باشد.

    طبق یك اصل كلی، مواد قطبی در حلال های قطبی و مواد غیرقطبی در حلال های غیر قطبی حل می شوند.

    حلال های آلی دسته ی بسیار مهمی از حلال ها را تشكیل می دهند كه در زندگی كاربردهای بسیاری دارند. به عنوان مثال، حلال ادكلن ها، انواع اسپری ها، چسب ها و ... انواع الكلها و دیگر حلال های آلی را تشكیل می دهند. چند حلال بسیار مهم صنعتی عبارتند از:

    دی متیل فرم آمید با نام اختصاری DMF و فرمول HC(O)N(CH3)2

    تترا هیدرو فوران با نام اختصاری THF و فرمول CH8O كه به شكل یه حلقه ی پنج ضلعی است كه در یكی از گوشه هایش اتم اكسیژن قرار گرفته است.

    دی متیل سولفوكسید با نام اختصاری DMSO و فرمول (CH3)2SO

    بیان شد كه الكلها دسته ی بسیار مهمی از حلال های صنعتی را تشكیل می دهند. میان ذرات حلال در الكلها، پیوند های هیدروزنی می باشد، اما یك سر الكلها، سر آلی و غیرقطبی آنها می باشد درنتیجه این حلالها می توانند هم مواد غیرقطبی را با سر غیرقطبی در خود حل كنند و هم مواد یكه می توانند با آن پیوند هیدروزنی برقرار نمایند، مانند آب.

    میان ذرات حلال غیرقطبی، فقط نیروهای واندروالس وجود دارند. میان ذرات ماده ی حل شده غیر قطبی نیز فقط نیروهای واندروالس وجود دارند. بنابراین تمام ذرات موجود در محلول، فقط تحت تاثیر این نیرو هستند و امكان تشكیل محلول وجود دارد.

    یك مثال حلال های غیر قطبی، هیدروكربنهای سیر شده خطی مانند هگزان است. موم كه یك ماده ی غیرقطبی است در هگزان حل خواهد شد.

    البته تمام اجسام غیرقطبی در یكدیگر حل نمی شوند. حال متداولترین نوع محلول یعنی، یك جامد حل شده در یك مایع را در نظر می گیریم. انحلال پذیری یك جامد غیرقطبی در یك مایع غیرقطبی به دو عامل بستگی دارد: دمای ذوب و آنتالپی ذوب آن. وقتی این جامد حل می شود، محلول مایع به دست می آید. جامد تغییر فاز می دهد. جامدهایی كه دمای ذوب و انتالپی ذوبشان بالاست، انحلال پذیری بیشتری نشان می دهند. این تفاوت به علت نیروهای جاذبه قویتر در بلورهای اجسامی است كه دمای ذوب بالا دارند. در جریان حل شدن باید بر این نیروها فایق آمد.

    برخی از حلال ها مانند كربن تتراكلرید CCl4 كلروفرم CHCl3 به شدت سمی می باشد. همچنین كار با اسیدها مهارت و تدابیر خاص می طلبد.

    اثرات زیان اور حلال های آلی در محیط های كوچك خود را نشان می دهد ، زیرا حلال های آلی به مراتب بسیار فرار بوده و درنتیجه به دیلی سمی بودن ، هم برای انسان و هم موجودات زنده دیگر زیان دارد.

    یكی از مهارتهای كار با حلال ها این است كه حلال های بی خطرتر پیدا كنیم: اغلب در آزمایشگاه ها، باید سعی كنیم كه استفاده از حلال های سمی برای حل كردن موادی كه در واكنش شیمیایی به كار برده می شوند، را حذف نماییم.

    بسیاری از حلال ها كه در مقادیر زیاد در صنعت به كار برده می شوند برای سلامت انسان مضر هستند یا می توانند خطرات دیگری مانند آتش سوزی و انفجار به وجود آورند. حلال هایی كه به طور گسترده استفاده می شوند و برای سلامت انسان مضر باشند شامل تتراكلرید كربن، كلروفورم، و پركلورواتیلین هستند.

  11. #220
    آخر فروم باز sajadhoosein's Avatar
    تاريخ عضويت
    Jul 2010
    محل سكونت
    iran
    پست ها
    1,893

    پيش فرض

    پيشرفت‌هاي سميت‌زدايي ترکيبات آلي کلرداربا نانوذرات آهن

    مقدمه

    رشد روزافزون جمعيت کشورها و فعاليت‌هاي صنعتي و کشاورزي از يک سو و رعايت نكردن الزامات زيست‌محيطي از سوي ديگر، سبب شده‌است تا در چند دهة اخير، مقادير زيادي از آلاينده‌ها مانند هيدروکربن‌هاي آلي کلردار به‌واسطة عواملي نظير دفع نامناسب پساب‌ها و ضايعات مراکز صنعتي و شهري، استفادة وسيع از آفت‌کش‌ها، علف‌کش‌ها و. . . ، به منابع آب‌هاي زيرزميني وارد و موجب کاهش کيفيت آب شوند [1]. حلال‌هاي آلي کلردار مثل تتراکلرواتن، تري‌کلرواتن، دي‌کلرواتن و وينيل‌کلرايد از جمله رايج‌ترين آلاينده‌ها هستند. ترکيبات آلي کلردار، که بسيار سمي و غيرقابل تجزية زيستي هستند، جزء شايع‌ترين و متداول‌ترين آلاينده‌هاي آب‌هاي زيرزميني به شمار مي‌روند [2]. ترکيبات آلي کلردار ضمن ايجاد اثرات سمي بر دستگاه اعصاب، خاصيت سرطان‌زايي نيز دارند [3].
    از اواسط سال 1990، پيشرفت‌هاي مهمي در تبديل آلاينده‌هاي آلي کلردار به محصولات بي‌ضرر نظير متان، اتان، با استفاده از فلزات ظرفيت صفر مثل قلع، روي، پالاديوم و آهن صورت گرفت که آهن رايج‌ترين اين فلزات است. در اين فناوري ابتدا از براده‌هاي آهن و سپس از کلوئيدهاي آهن در اندازة ميکروني استفاده شد [4].
    مطالعات وسيع در 15 سال اخير ثابت کرده‌است که آلاينده‌هاي محيط‌زيست مي‌توانند از طريق اکسيداسيون آهن ظرفيت صفر احيا شوند. بازده سميت‌زدايي، قيمت پايين و بي‌خطر بودن آهن، باعث توسعة يک روش نوين در احياي آلايندهاي محيط زيست به ويژه در آب‌هاي زيرزميني شده‌است [4].
    عموماً واکنش بين ترکيبات آلي کلردار (CxHyClz) و آهن در محلول آبي به‌صورت زير بيان مي‌شود.
    (1)
    که در آن آهن به عنوان عامل کاهنده در حذف کلر رفتار مي‌کند. اين واکنش مشابه فرايند خوردگي آهن است که در تغيير شکل آلاينده‌هاي کلردار مفيد است [5].
    شکل (1) تصوير TEM نانوذرات آهن [9]
    فناوري استفاده از نانوذرات آهن در احياي آلاينده‌هاي کلردار حرکت جديدي است که نسبت به روش‌هاي قبلي بسيار اقتصادي‌تر و کارامدتر است. زماني که اندازة ذرات آهن به مقياس نانو کاهش مي‌يابد تعداد اتم‌هايي که مي‌توانند در واکنش درگير شوند افزايش، و در نتيجه سرعت واکنش‌پذيري بيشتر مي‌شود. اين امر موجب مي‌شود که نانوذرات آهن قدرت انتخاب‌پذيري بيشتري نسبت به براده‌هاي آهن داشته باشند [6].
    اگر چه استفاده از نانوذرات آهن به جاي ميکرو و يا براده‌هاي آهن در احياي آلاينده‌ها بسيار مؤثر بود و حتي در اين فناوري موفق به احياي پرکلرات‌ها شدند که با روش‌هاي قبلي امکان‌پذير نبود، ولي مشاهده شده‌است که در بعضي موارد، محصولات واکنش به مراتب سمي‌تر از ماده اوليه هستند. به عنوان مثال از احياي تري‌کلرواتيلن مي‌تواند وينيل‌کلرايد تشکيل شود که بسيار سمي است [7 و2].
    درمسير توسعة فناوري‌نانوذرات آهن در اصلاح آب و خاک، گروه ژنگ (zhang) نانوذرات دوفلزي آهن- پالاديوم را در سال 1996 سنتز كردند. پس از آن در روش‌هاي مشابهي از فلزات کاتاليزوري ديگر مثل پلاتين، نقره، نيکل، کبالت و مس براي تهيه نانوذرات دو فلزي با آهن استفاده شد. بررسي نانوذرات دوفلزي نشان مي‌دهد که سرعت و بازده سميت‌زدايي اين ذرات بيشتر از آهن است. حضور يک عامل کاتاليزوري باعث مي‌شود که سرعت واکنش هالوژن‌زدايي بيشتر و از تشکيل محصولات جانبي سمي جلوگيري شود [8].
    روش آزمايشگاهي
    سنتز نانوذرات آهن از ابتکاراتي است که اولين بار در سال 1996 توسط ژنگ انجام شد. در اين روش، آهن فريک به‌وسيله بوروهيدرايد سديم طبق واکنش زير احيا مي‌شود [9]:
    (2)
    براي تهيه نانوذرات دوفلزي آهن- پالاديوم، نانوذرات آهن تازه‌تهيه‌شده به محلولي از اتانول و استات پالاديوم اضافه مي‌شوند. اين امر طبق واکنش زير منجر به ته‌نشيني پالاديوم بر سطح آهن مي‌شود:
    (3)
    در اين روش از آهن به عنوان فلز پايه و از از پالاديوم به عنوان فلز کاتاليزگر استفاده مي‌شود. تصاوير ميکروسکوپ الکتروني عبوري نانوذرات آهني که به اين روش سنتز شدند، نشان مي‌دهند که بيشتر از 90 درصد ذرات، قطري در حدود يک تا صد نانومتر دارند [9].
    سازوکار نانوذرات آهن
    بررسي واکنش‌هاي احياي نانوذرات آهن در محلول‌هاي آبي نشان مي‌دهد که آهن فلزي، يون فرو و هيدروژن گازي احياکننده‌هاي اصلي در محيط هستند. احياي آلاينده‌ها در سطح آهن مي‌تواند از طريق انتقال الکتروني و يا تشکيل هيدروژن انجام شود [10].
    بررسي سازوکار نانوذرات دوفلزي Ni-Fe نشان مي‌دهد كه همزمان با قرارگيري ذرات دوفلزي Ni-Fe در يک محلول آبي، يک پيل گالواني تشكيل مي‌شود كه Fe به فلز کاتاليزور الکترون مي‌دهد و Ni به‌وسيلة آهن، حفاظت کاتدي مي‌شود. زماني که آهن اکسيد مي‌شود، با آب تشکيل هيدروکسيد و يا اکسيد آهن مي‌دهد و پروتون‌ها روي سطح Ni به اتم‌هاي هيدروژن و مولکول هيدروژن تبديل مي‌شوند [2]. براساس اين سازوکار، واکنش هالوژن‌زدايي از طريق هيدروژن جذب‌شده بر روي کاتاليزور Ni-Fe به‌سرعت انجام مي‌شود [8‍].
    (4)
    (5)
    ترکيب هالوژن‌دار روي سطح ذرات Ni-Fe جذب و پيوند C-Cl شکسته مي‌شود. سپس، اتم کلر جايگزين هيدروژن مي‌گردد (شکل 2) [2].
    شکل (2) تصويري از سازوکار واکنش هالوژن زدايي يک ترکيب آلي کلردار با نانوذرات Ni-Fe ] 2[
    با توجه به مطالب فوق، سازوکار نانوذرات دوفلزي در واکنش‌هاي هالوژن‌زدايي موجب تشکيل هيدروژن مي‌شود. در حالي‌که ذرات تک‌فلزي و همچنين مخلوط فيزيکي دوفلز عملکرد متفاوتي دارند. اين موضوع از طريق اندازه‌گيري ميزان هيدروژن توليدشده در آب به‌وسيلة نانوذرات آهن، نانوذرات نيکل، نانوذرات دوفلزي Ni-Fe و مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل ثابت شده‌است.
    شکل (3) مقايسة مقدار هيدروژن توليدشده از واکنش نانوذرات دوفلزي، تک‌فلزي و مخلوط آن‌ها با آب. مربع مربوط به نانوذرات آهن، دايره‌ مربوط به نانوذرات نيکل، لوزي‌، مخلوط فيزيکي نانوذرات آهن و نانوذرات نيکل و مثلث مربوط به نانوذرات Ni-Fe است [2].
    مطابق شکل (3) ميزان هيدروژني كه نانوذرات دوفلزي Ni-Fe توليد مي‌كند، بيشتر از بقية ذرات است و اين مي‌تواند به‌دليل تماس الکتروني بين دو فلز آهن و نيکل باشد [2].
    شکل (4) ميزان گاز هيدروژن (molμ) که به‌وسيلة نانوذرات Ni-Fe در آب و در يک دورة زماني طولاني توليد شده‌است [2]

    شکل (4) نشان مي‌دهد که سرعت تشکيل هيدروژن در ابتداي واکنش به‌شدت افزايش يافته و با گذشت زمان، سطح آهن غيرفعال و سرعت واکنش کند مي‌شود [2].
    محصولي که در ابتدا از کلرزدايي تري‌کلرو‌اتيلن به‌وسيلة نانوذرات Ni-Fe به دست مي‌آيد، شامل اتيلن و بوتن است که با پيشرفت واکنش، آلکان‌هاي زنجيره‌اي و شاخه‌دار (C1-C8) علاوه بر اولفين‌ها تشکيل مي‌شوند. پس از يک دورة زماني طولاني، آلکن‌ها به طور کامل احيا مي‌شوند و آلکان‌هايي با تعداد کربن زوج، مثل بوتان، هگزان و اکتان توليد مي‌کنند. محصولات داراي کربن زيادتر به‌علت شکستن پيوند C-C به‌وسيلة کاتاليزور Ni تشكيل مي‌شوند [2].
    نتيجه‌گيري
    مطالعات انجام‌شده بر روي هالوژن‌زدايي ترکيبات آلي کلردار به‌وسيلة آهن، نشان مي‌دهد که مرحله تعيين کننده سرعت، مرحلة انتقال الکترون به مولکول جذب سطحي شده‌است. اين سازوکار بيان مي‌کند که سرعت احياي دي‌کلرو‌اتيلن و وينيل‌کلرايد که پذيرنده الکترون ضعيف‌تري نسبت به تري‌کلرو‌اتيلن هستند، کندتر است. در بررسي تأثير آهن در احياي تري‌کلرو‌اتيلن مشاهده شده‌است که بعضي از محصولات واکنش احيا، مثل وينيل‌کلرايد، مي‌توانند به مراتب سمي‌تر از ترکيبات اوليه‌شان باشند. همان‌طورکه قبلاً بيان شد، واکنش هالوژن‌زدايي آلاينده‌هاي آلي کلردار با نانوذرات دوفلزي از طريق احياي هيدروژن صورت مي‌گيرد. بنابراين، سرعت واکنش احيا به‌وسيله نانوذرات دوفلزي، به مراتب بيشتر از واکنش احيا از طريق انتقال الکتروني است. افزايش سرعت واکنش آلاينده‌ها، از تشکيل محصولات فرعي سمي جلوگيري مي‌کند. همچنين با استفاده از نانوذرات آهن مي‌توان برخي از آلاينده‌هاي بسيار مقاوم مثل پرکلرات را تجزيه کرد.
    اين روش به‌راحتي در شرايط محيطي قابل استفاده است و نياز به فراهم نمودن شرايط خاصي مثل دماي بالا وجود ندارد.

Thread Information

Users Browsing this Thread

هم اکنون 1 کاربر در حال مشاهده این تاپیک میباشد. (0 کاربر عضو شده و 1 مهمان)

User Tag List

برچسب های این موضوع

قوانين ايجاد تاپيک در انجمن

  • شما نمی توانید تاپیک ایحاد کنید
  • شما نمی توانید پاسخی ارسال کنید
  • شما نمی توانید فایل پیوست کنید
  • شما نمی توانید پاسخ خود را ویرایش کنید
  •